If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=3x^2+48x-3456
We move all terms to the left:
0-(3x^2+48x-3456)=0
We add all the numbers together, and all the variables
-(3x^2+48x-3456)=0
We get rid of parentheses
-3x^2-48x+3456=0
a = -3; b = -48; c = +3456;
Δ = b2-4ac
Δ = -482-4·(-3)·3456
Δ = 43776
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{43776}=\sqrt{2304*19}=\sqrt{2304}*\sqrt{19}=48\sqrt{19}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-48)-48\sqrt{19}}{2*-3}=\frac{48-48\sqrt{19}}{-6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-48)+48\sqrt{19}}{2*-3}=\frac{48+48\sqrt{19}}{-6} $
| 110=118-4p | | 5x^2-28x-153=0 | | 1/4x+2=-2/5x-5 | | -1/4s-5=1 | | 207-k=197 | | 17(r+12)=901 | | 4x+5-6x=45 | | (7x-23)+(6x-19)=(10x-9) | | 1.5p+1.3=84 | | 4x-14=13+x | | 20+3.50h=9+4.75h | | H(t)=-16t^2+t+5 | | 27-8y=7-4(2y-5) | | x+2|3=4 | | 280/t=20 | | 3(x+7)=2(4+33) | | 418/d=19 | | 4c-3=4c+2 | | 3(x+7)=2(4x=33) | | +1)20-(3x-9)-2=-1(-11x | | z-364/20=25 | | F(13)=5x+2x-13 | | 3(x+6)=2(2x+13) | | 6a−4=6+a | | |3k+12|=|k| | | 41=-3(3n+1)-2n | | 12.5+3x=21.5 | | 651=q/25+630 | | 2÷5e+4=9 | | 4(x−4)+5=4x | | 3n+10=7 | | -9+p/7=-11 |